Monte-Carlo optimizations for resource allocation problems in stochastic network systems
نویسندگان
چکیده
Real-world distributed systems and networks are often unreliable and subject to random failures of its components. Such a stochastic behavior affects adversely the complexity of optimization tasks performed routinely upon such systems. In this work we investigate Monte Carlo solutions for a class of two-stage optimization problems in stochastic networks in which the expected value of resources allocated before and after the oc curence of stochastic failures needs to be opti mized. The limitation of these problems is that their exact solutions are exponential in the num ber of unreliable network components: thus, ex act methods do not scale-up well to large net works often seen in practice. We first show that Monte Carlo optimization methods can over come the exponential bottleneck of exact meth ods. Next we support our theoretical findings on resource allocation experiments and show a very good scale-up potential of the methods on prob lems with large stochastic networks.
منابع مشابه
Technical Report: CS-03-01 Monte-Carlo optimizations for resource allocation problems in stochastic network systems
Real-world distributed systems and networks are often unreliable and subject to random failures of its components. Such a stochastic behavior affects adversely the complexity of optimization tasks performed routinely upon such systems. In this work we investigate Monte Carlo solutions for a class of two-stage optimization problems in stochastic networks in which the expected value of resources ...
متن کاملConstrained consumable resource allocation in alternative stochastic networks via multi-objective decision making
Many real projects complete through the realization of one and only one path of various possible network paths. Here, these networks are called alternative stochastic networks (ASNs). It is supposed that the nodes of considered network are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of t...
متن کاملDistribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The m...
متن کاملDistribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location– allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. ...
متن کاملA Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network
In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003